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PLANAR NONLINEAR OSCILLATIONS OF THE CENTER OF MASS

OF A SOLID WITH A MAGNETIC DAMPER

K. K. Lavrinovich

1. The proposed study examines nonlinear planar oscilla- /70

tions of a solid body with respect to the center of mass under

the following assumptions:

1) the center of mass of this body moves in a circular tra-

jectory under the influence of gravitational forces around a second

body which has a central newtonian gravitational field; the mass

of the moving body is negligibly small versus the mass of the at-

tracting body.

2) the attracting body also has a magnetic field which can be

represented as a dipole model. The plane of trajectory of the mo- /71

ving body passes through the poles of the magnetic field;

3) on the moving body is set a magnetic damper, which is a

magnetized metal sphere immersed in a chamber containing a viscous

fluid. The damping effect is achieved due to the viscous friction

between the fluid, the walls of the chamber and the magnetized

globe which, with the oscillations of the body, tends to remain

immobile with respect to the local vector of the force line of the

external magnetic field. The damping momentum is proportional to

the first power of angular velocity of motion of the magnetized

globe with respect to the damper body. This damping device is

described in study [1] among others;

4) the moving body in the plane of trajectory is affected

by the external excitation momentum which can be represented as

a Fourier series in terms of powers of orbital frequency.
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Supposition 1) permits us to examine oscillations of the

solid body with respect to the center of mass independently of

trajectory of motion.

Let us connected rigidly with the body a rectangular system of

coordinates (x, y, z), whose center coincides with the center of

mass of the body, and the axes are directed along the main central

axes of inertia, where the x axis corresponds to the largest axis

of the ellipsoid of inertia; the y axis to the middle; the z axis

to the smallest. Let us also introduce an orbital system of co-

ordinates (xl, Y1 , Zl) which has a common center with system (x,

y, z) and the following direction of axes: axis xl coincides with

the direction of the radius-vector of the center of mass with re-

spect to the center of gravity; axis yl--with the direction of the.

positive transversal, axis z1 is binormal to the plane of trajec-

tory. If like axes of both systems are collinear, the body is in

one of the four positions of stable equilibrium. Equations de-

sctibing body oscillations in the plane of trajectory with respect

to any of these positions of equilibrium, with accuracy to within

the notations, coincide for determinacy we will consider oscilla-

tions with respect to the position of equilibrium which is typi-
fied by a coincidence of like axes. As coordinates let us select

the angle 6 , read from the positive direction of axis xl to the

positive direction of axis x. Without going into the details of

the derivation, which can be found in study [2], let us write the

equation of plane oscillations of the body in the form

0+3( sinOcOs A (2(oF2)-- + (1)

I1ziz.

Here the notations are used: w 0--angular velocity of orbital mo-

tion; Ix , Iy' Iz--moments of inrtiaof the body with respect to

the corresponding axes; kd--the coefficient of damping, equal to

the coefficient of proportionality between the angular velocity /72
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of motion of the magnetized globe with respect to the body of the

damper and the damping moment;

F 2 - .+3 sin o t- +  3m COs 2m wt, (2)
m =1

Mz--external excitation moment.

The dot signifies differentiation with respect to time t.

Let us move on in equation (1) to the argument u = 0t and make
0

the substitution e = -
2

*,," 2 sin (4F 2 -i+M.),

where it is designated that

a2=3 " ': ' k,

M ook, =Co+ (c,,sinnu+d.cosnu);
n=1 (4)

the prime signifies differentiation with respect to u. In assum-

ing that kd is small, we can consider (3) as a nonlinear differen-

tial equation of the second order, containing small parameter E.

With respect to the coefficients cn, dn we will assume that they

are sufficiently small and decrease in absolute magnitude with an

increase in n.

2. The approximate solution of equation (3) will be sought

using the method of averaging, employing the property of smallness

of parameter e.

When e= 0 we derive the homogeneous nonlinear equation

5"+asin4=0, .3 (5)
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whose solution for the case of oscillations will be the function

4=2arcsin(k-snla(u+.Uo), k]}. (6)

This solution depends on two arbitrary constants k and u0 , the

modulus k of the elliptical function having the sense of a sine

of the amplitude of oscillations of angle 8. The solution of (6)

has in u a period T =.(4K)/a and a corresponding round<frequency

(k) = (rra)/(2K), where K(k) = r _ --the complete

elliptical integral of the first order., With the admission of a

new variable 0 in the formula = w(k) (u + u 0 ), we bring solution

(6) to the period 27

2 arcsin [ks (-- 7 ,C k (7)

The solution of equation (3) will be sought in the form of (7), /73

considering 4 and k as unknown functions of u and assuming also

that

(), J (8)

where the lower index signifies the partial derivative with respect

to 4. Let us substitute (7) in (3) and (8) and solve the derived

system with respect to the derivative functions k(u) and 0(u)

d (4FP-P+M*) Q
du PkQ-PQk

d ( kIe) -_______ (9)

dQ
Here we have adopted the notation dQ P. A similar system is

examined in study [3]. There is it proven that the denominator
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on the right sides of (9) does not depend on and that it is

equal to the derivative with respect to k

S'(k)=PkQp--PQk I (10)

from the integral of action of equation (3)

2)(k) ~ Q p. (11)

Let us re-write (9) taking into account (10)

dk . (4 F-P±M) Q,

' dy (12)- = (k)- ~ k)(4F2p-+M) Qk (12)

From (12) it is clear that k is a slow variable, while the deri-

vative d differs from w(k) by a quantity on the order of E. More-
du

over, the right sides of (12) are periodic with respect to' and

u with a period of 21. Consequently, we can derive a solution of

system (12) with an accuracy on the order of c exclusively, aver-

aging the right sides with respect to u and q.

3. Let us assume that at the onset of motion described by

equation (3), frequency W(k) of inherent oscillations is not close

to some fraction r/s of the frequency of perturbation (r, s--na-

tural mutually simple integers). In this context, it is admis-

sible to average the right sides of (12) with respect to u and /:74

as independent variables:

2t 21t
dk E 1 A

du I' (k) 4.2 (4F 2 ---P+ *) Q, du d,
0 0

du o (k) I' ((4F-P+M) Qk du d.
oo
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Let us note that functions Q(q , k) and Qk (  k) are non-even with

respect to the argument 4, while function Qb (c, k) is even and all

named functions have a period of 2 fr with respect to 4. Consider-

ing these properties of the subintegral functions, and also bearing

in mind (2) and (4), we find that

dk E (k) 2
u I' (k) 2r. Q d?,

2 *(13)

The integrals from the terms containing F2 and Mz are equal to

zero, i.e., in this nonresonant case, the velocity of attenuation

of oscillatory amplitude is not a function, in the first approxi-

mation, neither of external perturbations Mz nor of periodic per-

turbations experienced by the body from interaction of the damper

core with the external magnetic field.

On the right side of the first equation of (13) stands the

integral of action (11). Let us differentiate (7) with respect to

Q- -4kK cn (2K P, I

S-- - (14)

let us substitute (14) into (11) and integrate (11)-

(k) E K)(15)

Let us calculate here I'(k):

(16)

Here E(k) = 1-k-sin2 d. --the complete elliptical integral
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of the second order; k' &nd k are connected by the relationship

k 2 = 1 k 2  In calculating (14), (15), (16) we employ the laws

and formulas cited in [4] and [5]. Substituting .(.15) and (16) in

the first equation of (13), we find that

dk (
du k (E-k'"K). (17)

Because all coefficients on the right side of (17) are positive, /75
dkthen - < 0, i.e., in the nonresonant case the amplitude decreasesdu

with time and we have an attenuating oscillatory process. To in-

tegrate equation (17) is not exactly possible due to the complex

relationship of the right side as a function of k. The relation-

ship k(u) can be derived as a result of a numerical solution of

.equation (17) on computer. Let us note that formula (17) is valid

tolwithin E accuracy in the interval of change of the argument on

the order of T

4. We can not, however, we assured that in all cases ;

oscillation will develop as an attenuating process. Indeed, the

initial Value of inherent frequency w(k) does not remain constant

in the veint of attenuating oscillations, it increases in propor-

tion to a decrease in k,. Consequently, at some moment our assump-

tion that w(k) 7 r/c will'be untrue and at some frequency, equal

or close to this value, oscillations can 'get stuck,' i.e., become

stationary.

Let us define the value of amplitude and phase of oscillations

in stationary resonant conditions, i.e., when the-apprOximate equa-

lity is fulfilled

( (k) r

Study of this case follows the scheme of study [3]. Let us first

make several transformations. With allowance for (2) and (4),
b 7



let us write

4F2+M *=(2+co)+ (csin nu+d' cos nu), (18)

where

Id, ,4 if n $ 2m,

.3 if n 2m.

Furthermore, let us introduce a new variable--phase shift K ac-

cording to the formula

S(u+) (19)

and move on to K in equations (12)

dk • F2 ,
d s I' (k) (4F(4F+P) ) Q(20)

If the different w(k) - r/s is sufficiently small (on the order of

E), then K, as with k, is a slow variable; and in system (20)

is permissible averaging with respect to the 'quick' variable # /76

in period equal to the smallest bommon multiple of the period of

inherent oscillations 27 and the period of perturbing function

(2nr)/s, i.e., in period 27r.

Bearing (8) in mind, we find that
2nr

du -(k) 2 r (2+ co)Q. + [c.sin cosniQ

0 n=l

ns, "s
-c, sin nx cos --- Q d' cos - cos nx Qp +

8 d sin sin nx Q - (k) Q2 dy,
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2.r

k --s (7- - 5 -) - (2+co) Qk+

+ [cn sin-- ( cos nx Qk-cn sin nx cos - '+Qk + (21)
n=

+d cos- cos nx Qk+dsin p sin nx - u(k) QQ k dy.

Because functions Q, Qk are odd, function Q is even and all

named functions have a period of 2r, the integrals in (21) from

expression Q, , sion Q, Qk' cos rsQk' Q0Qk are equal to zero.

The integral of the last term in the first equation of (21) co-

incides with the integral of action (15). Considering these re-

marks and noting that

b=, d -=cos, - = s in T'n (22)

let us write (21) in a new form

dk [b cos(n y) cos yQ dy k)
Idk ' ns

ddu sx I ) O - I (k)

X bnsin(nx--) 2r sin2-d2 (23)
n= 0

The integral in the first equation will be calculated using the

decomposition [41

I1

Q,=8 8tq 2 cos [(2i-1) c],
=1+q21-1 /77
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where q = exp( - - -)--a parameter of elliptical Jacobi functions,

K' = K(k'). We then have

1 2 r co r cos(2i- 1) y

In the expression for I only those terms for which the equality

(ns)/r = 2i - 1 is fulfilled are not equal to zero. Consequently,

let us switch under the summation sign to a common index of sum-

mation n

I1= CS2 n d

rn= -(21-1) +q'

where i runs through only those natural values for which the index

n is also natural for given r, s. Hence it follows, in particular,

that with even s, this integral vanishes, resonance does not arise

in the system, and we get the aforenoted case of attenuating oscil-

lations.

The second integral in system (23) is calculated, employing

integration by parts:
2nr

I sin 1)Qk±
n=10

oo 2r

- COS s--
n=1 0 - )

' S_"0 r - n s .. .
2-7rS - os rQ7d?

n=10

•r S $nsScos -Q d =
W 2nr ns r

n=1 0

( us f2r. 

s

n=1 r n= 2i- l  q s 2
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Here the index i is subordinate to the same condition as the in- /78

tegral I1 . Therefore, the averaged system (23) acquires the form

ns

-2 b, cos (nx+y.)-2 (E-k"K)

) 2" -1) 1+q rS
d - s r s

7 [ (k)- S- '(k) k X (24)/
ns / ns

xn b sin (nx+ y,).

n= (2i-1) I+q r

Equating the right sides of (24) to zero, we derive an equation

for defining k and K in stationary resonance conditions. In order

to make these transcendental equations practically solvable, let

us introduce several simplifications. Because w(k) - r/s = 0 (e),

then without violating the order ofoaccuracy [3], we can derive

F-
S- -, (ko)(k-ko),.: ) (25)

where k0 is a value of k which satisfies the precise equality

(ko) (26)

and the derivative w'(k 0 ) has the form

' ((E-k' K) (27)
2kk"K2

Moreover, since the different k - k0 is small, on the right sides

of this system we will posit k = k0. We find that:

ns

q 2 2a
r b cos(nx + i) - (E-k"K),

n= r (2i-1) 1+q

k-k r qs _ 2. 2
l- q  x (28)

-s 4CkK (E-k'ZK) ( - k- 11
n= -(21- 1). (l+q 

ii

Xb. sin (nx +T),



where i only accepts natural values, for which n is natural for /79

given r and s. Further we will bear in mind the following con-

cepts. While discussing the resonant case, we assume that the

magnitude of frequency of inherent oscillations w(k) is close to

some irreducible fraction r/s. We will show that from an infinite

set of fractions r/s it makes sense to discuss only those whose

natural r and s are small. Here three cases are possible:

a) r is great, s is small, i.e., the fraction r/s is greater;

by dint of the approximate equality w(k) Z r/s, it will;:obntra-i:

diet -the physida; sense of the quantity (k) included in the inter-

val [0, cx], where 0 < c < /T ;

b) r is small, s is great. In the limiting case we have r/s +

+0, w(k) = 7a/2K - 0, the latter relationship with fixed a is ful-

filled under the condition that k + 1. Referring to the first equ-

ation of (24), we see that

I lim La

i.e., we have the aforementioned case of attenuating oscillations

(the right sides of the latter formula and formula (17) coincide).

c) r is great, s is greatr yXi, Here let us exclude from the

discussion those r and s at which the ratio r/s is greater (case a)

or small (case b); At large r and s, the index of summation n in

system (24)is also great (the first term unequal to zero below the

summation sign has the index n = r); consequently, the power of
ns
2r is small (since q < 1) and the coefficients bn are small since

cn, dn decrease in inverse proportion to n; thus the terms standing

below the summation sign can be ignored and we again derive an

equation of the nonresonant case.
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Therefore, let us first consider only small r and s where

s is odd.

Let us note further that in the case of odd r, the integrals

in (23) of terms with even n are equal to zero; with r even, inte-

grals with odd, n' vahiish, i.e., periodic perturbations from the

interaction of the damper with the external magnetic field affect

the motion only in cases of even r.

Let us study first the possible formation of stationary re-

sonance due to perturbations from the damper, i.e., let us assume

r to be even. Since under the assumption that w(k)- r/s and in /80

general that 0 < w(k) < /3, then the permissible values of r with

given s can be derived from the inequality 0 < r/s < /3. For ex-

ample, s = 1, no even r exist

Let us pause in more detail on the case of minimal values of r and

s, i.e., r = 2 , s = 3 . Under the summation sign in system (24)

will remain terms with the indexes n = 2, 6, 10,

. . . + q3,Lq 2. (. (/ + '

The quantity q9/2, which increases in proportion to k, even when.

k = 0.95, has an order of 0.0004; therefore, in systems (24) and

13



(28), respectively, we can ignore the summands for which n > 6.

We find that

3, 2. q-- ... .. -- .. .. , ..... . ( 2 9 )

The values of k and K, corresponding to stationary resonance con-

ditions, are found in the following order. From correlation (26),

re-written as rfa/2K = r/s, where a, r, s are fixed, with the aid

of tables of elliptical integrals (e.g., [6], [7]), we find k0;

then we substitute the found k0 in the first equation of (29) and

from it define the pair of resonance values 2K + y2, which differ

in signs. With known k0., K from the second equation (29) we de-

rive the corresponding pair of values of k. The absence of a so-

lution of system (29) indicates the impossibility of resonance

conditions. The first equation has a solution if Icos(2K+y 2) i1,
i.e., if

(30)

Numerical analysis of inequality (30) for 0.05 < k < 0.95 and /81

2/3 < a < /3 shows that it is satisfied only at values of the

coefficient b2 which contradict the supposition:ofits smallness

(6 .g., at kO = 0.50, b2 > 33; at , 0 = 0.90, b2 > 8, whereas the

value of b2 having actual meaning has an order of one). There-

fore, when r/s = /3, stationary resonance conditions do',inot:arise

in the system.
ns/2r

With an increase of r or s, the coefficient 1 + qn/r

decreases t in the first case, due to an increase in the number n in

the coefficient bn; in the second case--due to an increase in the
14



exponent ns/2r. Consequently, with other possible combinations of

even r and odd s for the existence of a solution of system (28),

it is necessary that the coefficients bn be still greater than where

r/s = 2/3. Since the proposed values of bn are much less, we come

to the conclusion that the damper can not evoke stationary reson-

ance conditions in the body's oscillatory motion.

Let us further examine the question of stationary resonance

which can arise due to the perturbing momentum Mz (more precisely,

due to its odd harmonics). Let us find odd r which satisfy the

inequality 0 < r/s < /3, with given s:

(24) stand terms with the indexs n = 1, 3, 5, 7, ... Let us suppose

that k (and thus q, too) are.sufficiently small and let us ignore

terms in (28) which have n > 3. We then have

15

System (31) can be solved numerically. Adopting b1 =1 for deter-

minacy, we will find that system (31) has a solution where a

from the interval 1 < a < 1.07. In studying resonance effects, we

usually construct by the formula ffa/2K = 2/s the so-called skeleton

curve k0 (.ic), and also resonance curves k (a) and k (a). The co-

15



ordinates of curve k (a) are derived in solving the second equation /82

of (28) with a negative value sin(K+Y ) ; the coordinates of curve

k- ()--with a positive value. The functions k(a), k +(a) and k (a)

are incremental functions of a; with an incre'ase in a, the curves

k (a) and k (a) approach each other and at some a= a* (a* corres-

ponds to the value cos(K+yl) = 1), the equalities k+ (a*) = k (a*)

are fulfilled. In our case a* Z 1.07. When a= 1.06, close to the

right end of the interval of existence of the solution, we find

that

ko ()= 0,452
k+ (-)= 0,457 0+=27012'
k- (a) =,0,443 0-= 2617'.

The largest value of ql corresponding to k = 0.457 is equal to

q Z 0.016, i.e., the disregard for terms with q3/ 2  0.0021 which

took place above was fully. jiustified. It is not hard to prove with

the aid of numerical analysis that when s > 3, the first equation

in (28) has no solution either at any r/s < d < /3, i.e., with

real values of the parameters in the system, only main resonance

is possible.

To study the stability of resonance conditions when r, s = 1,

let us linearize system (24) in the neighborhood of resonance values

k* and K*, discard as before the terms with the indexes n > 3, and

compose an equation in the variations

d (5k)
du A, sin (Yx*+i7) x,

d(6x) (32)
d = a ' (ko) k-B, cos (x* +i) x,

where for brevity we designate that

4qq q12(1--q)
A1=4q11 2 b1, B 1  bl.

16 1 I'(k) I+q _ (k) kk2Ks 1+q1 6.. ... .. . ... ... ... .. . ..



Let us note that always A1 > 0, B1 > 0, (k0),< 0. Let: us com-

pose the characteristic equation of system (32);

-2+B 1 cos (x+71) ++ (ko) A, sin (x+T)=0

and an expression for its roots

X1,2= - B cos (x+±)

± - B cos (x+Ti)]2 - ' (ko) A1 sin (x+-T).

(33)

Since always cos(K+y1 ) > 0, the first summand in (33) is negative.

If sin(K+ yl) > 0, then l' 2 are real and of" different sign--

we have a saddle. If sin(K+y 1 )< 0, then according to the rela-

tionship of absolute values of the summands below the root sign,

a particular point is either asymptotically stable or is a stable /83

focus. Therefore, resonance conditions corresponding to the top

resonance curve k (a) are stable; corresponding to the lower k (a)

--unstable.

5. In summing up the entire discussion, we come to the conclu-

sion that in a system whose motion is described, under the assump-

tions taken, by equation (3), only main resonance is possible for

the narrow band of values of a, lying to the right of one. Since

in real systems like this usually a> 1 (a 1.6-1.6)(1), reso-

nance conditions can not arise in them. Motion will develop as

an attenuating oscillation process; the stable conditions will be

slight residual oscillations with respect to the position of stable

equilibrium described by the value 8 = 0. The amplitude, phase

shift and shift of center of these residual oscillations can be

calculated using a linear theory and assuming 0 to be small.
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